Физики из США и Новой Зеландии научились ловить и обращать вспять квантовый скачок между основным и возбужденным состоянием трехуровневого искусственного атома. Результаты, полученные учеными, противоречат позиции Нильса Бора и парадоксу о коте Шредингера — прыжки не происходят внезапно или случайно, как считалось до сих пор. Об этом сообщает журнал Nature.

Кот Шредингера — широко известный парадокс квантовой физики, иллюстрирующий идею суперпозиции, то есть способность двух противоположных состояний существовать одновременно и непредсказуемо. Наблюдатель узнает, жив кот в коробке или мертв, только открывая ее. По крайней мере, так считалось раньше, потому что в момент открытия коробки происходит аналог квантового скачка — дискретное и случайное изменение в состоянии во время наблюдения.

Команда ученых заинтересовалась не самим четвероногим добровольцем или его коробкой, а более фундаментальной частью этого мысленного эксперимента – тем, как “суперпозиция” живого и мертвого кота совершает так называемый квантовый переход и становится одним из двух “классических” состояний.

До недавнего времени ученые не знали, как именно происходит этот процесс. Многие физики, такие как Нильс Бор, считали, что квантовые переходы в принципе нельзя предсказать и что они происходят фактически мгновенно.

Для крошечного объекта вроде электрона, молекулы или искусственного атома с квантовой информацией (кубита) квантовый скачок — это внезапный переход от одного из их энергетических состояний в другое. Разработчикам квантовых компьютеров приходится иметь дело с такими прыжками кубитов, которые свидетельствуют об ошибках в вычислениях.

Ученые Йеля захотели знать, возможно ли получить предварительный сигнал, оповещающий о скором прыжке. Физики применили непрямое наблюдение за сверхпроводящим искусственным атомом. Они использовали три микроволновых генератора, облучающих атом, заключенный в трехмерную полость из алюминия. Микроволновое излучение вызвало квантовый скачок атома. Микроскопический квантовый сигнал этих прыжков можно усилить при комнатной температуре и наблюдать в реальном времени.

Несмотря на то, что квантовые скачки в долгосрочной перспективе дискретны и хаотичны, обращение прыжка вспять означает, что эволюция квантового состояния носит отчасти детерминированный характер. Прыжок всегда осуществляется в той же самой предсказуемой манере из случайной стартовой точки.

Помимо вклада в фундаментальную науку, это исследование серьезно продвигает вперед теорию квантовой информации. Ведь возможность надежно контролировать квантовые данные и исправлять ошибки по мере их возникновения — ключевая проблема в развитии полностью функционального квантового компьютера.

Рекомендуемые статьи

Добавить комментарий

Ваш адрес email не будет опубликован.

Close